Introduction to Text Analytics with R – Part 6: N-grams

This data science tutorial introduces the viewer to the exciting world of text analytics with R programming. As exemplified by the popularity of blogging and social media, textual data if far from dead – it is increasing exponentially! Not surprisingly, knowledge of text analytics is a critical skill for data scientists if this wealth of information is to be harvested and incorporated into data products.

Part 6 of this video series includes specific coverage of:

• Validate the effectiveness of TF-IDF in improving model accuracy.
• Introduce the concept of N-grams as an extension to the bag-of-words model to allow for word ordering.
• Discuss the trade-offs involved of N-grams and how Text Analytics suffers from the “Curse of Dimensionality”.
• Illustrate how quickly Text Analytics can strain the limits of your computer hardware.

This data science training provides introductory coverage of the following tools and techniques:

– Tokenization, stemming, and n-grams
– The bag-of-words and vector space models
– Feature engineering for textual data (e.g. cosine similarity between documents)
– Feature extraction using singular value decomposition (SVD)
– Training classification models using textual data
– Evaluating accuracy of the trained classification models

The data and R code used in this series is available via the public GitHub:
https://github.com/datasciencedojo/IntroToTextAnalyticsWithR

(76)

About The Author
- Data Science Dojo is a paradigm shift in data science learning. We enable all professionals (and students) to extract actionable insights from data.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>