LSA, VSM, & SVD – Text Analytics with R | Learn Data Science

Part 7 of this video series includes specific coverage of LSA, VSM, & SVD:

– The trade-offs of expanding the text analytics feature space with n-grams.
– How bag-of-words representations map to the vector space model (VSM).
– Usage of the dot product between document vectors as a proxy for correlation.
– Latent semantic analysis (LSA) as a means to address the curse of dimensionality in text analytics.
– How LSA is implemented using singular value decomposition (SVD).
– Mapping new data into the lower dimensional SVD space.

Kaggle Dataset can be found here

The data and R code used in this series is available here

(237)

Avatar
About The Author
- Data Science Dojo is a paradigm shift in data science learning. We enable all professionals (and students) to extract actionable insights from data.

Start the discussion at